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A 24-GHz Ultra-Wideband Over Fiber System Using
Photonic Generation and Frequency Up-Conversion
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Abstract—We propose and experimentally demonstrate the
generation of baseband ultra-wideband (UWB) monocycle and
doublet pulses using one dual-parallel Mach–Zehnder modulator.
We further present a proof-of-concept demonstration of a 24-GHz
UWB over fiber system based on frequency up-conversion. The
performance of the up-converted UWB pulses after fiber trans-
mission is studied.

Index Terms—Dual-parallel Mach–Zehnder modulator
(DPMZM), ultra-wideband (UWB) over fiber, up-conversion.

I. INTRODUCTION

U LTRA-WIDEBAND (UWB) is a promising method to
provide short-distance high-speed wireless communica-

tions in future 4G systems and wideband personal access net-
works [1]. There are two types of UWB signals: one is multi-
band orthogonal frequency-division multiplexing UWB, and the
other is impulse-radio UWB (IR-UWB). IR-UWB is attractive
due to the carrier-free advantage and better pass-through feature
[2]. Recently, the convergence of UWB and optical fiber systems
has raised great interest to extend the UWB coverage area and
exploit the advantages offered by optical fibers. Monocycle and
doublet pulses show good performances in IR-UWB systems.
As it is complicated to directly produce them in the electrical
domain, previous reports focused on optical generations of the
baseband monocycle and doublet pulses using Gaussian driving
signals [3]–[10]. Meanwhile, a 24-GHz UWB signal is desir-
able for its large bandwidth, spectrum availability, and high res-
olution. It has been defined as an emission mask fallen into the
band of 22–29 GHz with a central frequency around 24 GHz
and allocated for vehicular radar applications by the Federal
Communications Committee (FCC) [11]. In addition, there is
demand to integrate the local UWB environment into fixed wire-
line or wireless networks without distance limitation. There-
fore, photonic frequency up-conversion is considered as one of
the attractive techniques to generate the 24-GHz UWB signal
[12], [13]. However, the performance of the up-converted UWB
pulses after transmission has not been experimentally studied.
Moreover, high-speed electrical devices are needed in [12] and
an elaborated up-conversion structure is employed in [13].
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Fig. 1. (a) Principle of monocycle pulse generation; (b) experimental demon-
stration of monocycle pulse generation. Waveform: 200 ps/div (t-axis).

In this letter, we propose and demonstrate a 24-GHz UWB
over fiber system with a simple structure using photonic gener-
ation and frequency up-conversion. An integrated dual-parallel
Mach–Zehnder modulator (DPMZM) is used to optically gen-
erate UWB monocycle and doublet pulses. Since the DPMZM
is a commercial off-the-shelf device fabricated on a single chip,
compared to previous schemes employing multiple discrete
components or complicated nonlinear processing [3]–[9], it
exhibits the advantages of compact architecture, low cost,
convenient alignment, and small insertion loss. The obtained
baseband UWB is then up-converted to generate a 24-GHz
UWB signal based on optical-carrier suppression (OCS) modu-
lation. The performance of the up-converted UWB pulses after
the fiber transmission is also studied.

II. UWB PULSE GENERATION

The DPMZM [14] consists of a pair of sub-Mach–Zehnder
modulators (MZMs) embedded in the two arms of a main MZM.
The two sub-MZMs have the same architecture and performance,
and the main MZM combines the outputs of the two sub-MZMs.
The output field of the main MZM can be given by

(1)

where and are the output fields of the
two sub-MZMs, and are the bias voltage and
switching voltage of the main MZM, respectively. The output
signals of the two sub-MZMs are constructively or destructively
combined by adjusting the bias of the main MZM. Fig. 1(a)
shows the generation principle of the UWB monocycle pulse
based on the DPMZM. The MZMs have two modulation
regions with opposite slopes at different bias voltages. If an
electrical Gaussian pulse is applied to the two sub-MZMs bi-
ased at the positive (point A) and negative (point B) quadrature
points, one can obtain optical pulses with inversed shapes,
as depicted in Fig. 1(a). Fig. 1(b) shows an experimental
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Fig. 2. (a) Waveform of the generated monocycle pulse; (b) electrical spectrum
of the generated monocycle pulse.

Fig. 3. (a) Principle of doublet pulse generation; (b) experimental demonstra-
tion of doublet pulse generation. Waveform: 200 ps/div (t-axis).

illustration using a 10-GHz DPMZM (COVEGA Mach-10
060). A pulse pattern generator (PPG) is used to generate an
electrical Gaussian pulse operating at 10 Gb/s with a fixed
pattern of “1000 0000 0000 0000” [4], the waveform is shown
in Fig. 1(b-i), where the full-width at half-maximum (FWHM)
is 100 ps. The electrical Gaussian pulse is split into two equal
parts to drive the two sub-MZMs, respectively. Two electrical
amplifiers are required to amplify the electrical pulses. The
output waveform from the MZ-a biased at the positive slope
is shown in Fig. 1(b-ii) and the one from the MZ-b biased at
the negative slope is provided in Fig. 1(b-iii). An electrical
phase shifter (PS) is used to adjust the relative delay between
the two modulating signals. In practice, the delay can also be
realized by controlling the lengths of cables that connect the
PPG and the two radio-frequency (RF) ports of the DPMZM,
thus offering lower configuration cost. The outputs of the two
sub-MZMs are constructively added by adjusting the bias-c
to generate a monocycle pulse with an FWHM of 85 ps, as
shown in Fig. 2(a). After detection by a photodetector (PD), the
electrical spectrum is tested by an electrical spectrum analyzer
in Fig. 2(b), where the central frequency is 4.5 GHz and the
10-dB bandwidth is 6 GHz (from 1.2 to 7.2 GHz). It should be
noted that a polarity-reversed monocycle pulse can be obtained
by adjusting the PS.

To obtain a doublet pulse, the nonlinear nature of the MZM
transfer function can be utilized. If the MZM is biased such that
the driving voltage crosses the transmission null of the MZM,
certain overshoot can be generated, as indicated in Fig. 3(a).
Fig. 3(b) shows the experimental demonstration using the same
DPMZM. After being boosted by the electrical amplifiers, the
two electrical Gaussian pulses with different amplitudes drive
the MZ-a and the MZ-b, respectively, where the bias points are
adjusted to be close to the transmission null (as shown in the
point A and B of Fig. 3(a), respectively). The waveforms of the
output signals from the MZ-a and the MZ-b are shown in in-
sets (i) and (ii) of Fig. 3(b), respectively. The generated two

Fig. 4. (a) Waveform of the generated doublet pulse; (b) electrical spectrum of
the generated doublet pulse.

Fig. 5. Experimental setup of the 24-GHz UWB over fiber system. (i) The spec-
trum of the OCS-UWB signal. (ii) and (iii) The waveforms of the OCS-UWB
monocycle and doublet pulses, respectively. (iv) and (v) The waveforms of the
filtered monocycle and doublet pulses, respectively.

pulses are destructively combined so that a doublet pulse can
be obtained. The waveform of the doublet pulse is shown in
Fig. 4(a), where the FWHM is 70 ps. There are some rip-
ples following the generated doublet pulse, which are attributed
to the imperfect electrical driving pulses [see Fig. 1(b-i)]. The
electrical spectrum is shown in Fig. 4(b), with the central fre-
quency of 5 GHz and the 10-dB bandwidth of 7 GHz. A
polarity-reversed doublet pulse can be obtained if the driving
voltage crosses the transmission peak and bias points of the two
sub-MZMs are set near the transmission maximum.

III. 24-GHz UWB OVER FIBER SYSTEMS

Fig. 5 shows the experimental setup for the generation of the
24-GHz UWB over fiber system. The output optical field of the
DPMZM can be given by

(2)

where is the angular frequency of the optical carrier, is
modulation index, and is the UWB pulse train. The opti-
cally modulated UWB signal from the DPMZM is injected into
a following MZM, which is driven by an RF signal of the fre-
quency , and biased at the transmission null to generate an
OCS-UWB signal. Reference [15] has demonstrated a phase-
modulated carrier is suppressed by the OCS technique. Using
the Bessel functions, the output filed of the MZM can be ap-
proximately expressed as

(3)
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Fig. 6. Electrical spectra of the up-converted UWB pulses. (a) Monocycle
pulse; (b) doublet pulse.

Compared with (2), (3) shows that the UWB signal carried
at the optical carrier is shifted to the two tones after the
OCS modulation. In this experiment, the MZM is driven by
a 10-GHz RF signal, thus generating a 20-GHz OCS-UWB
signal; the spectrum is shown in Fig. 5(i). The optical eye
diagrams of the up-converted UWB pulses are provided in
Fig. 5(ii) and (iii), respectively. The generated OCS-UWB
signal is amplified by an erbium-doped fiber amplifier (EDFA)
and a tunable optical filter (TOF) is used to suppress amplified
spontaneous emission (ASE) noise. After transmission over a
25-km standard single-mode fiber (SSMF), a high-speed PD is
used to convert the OCS-UWB signal into an electrical UWB
signal. Fig. 5(iv) and (v) provides the waveforms of one filtered
sideband of the OCS-UWB signal. The frequency spacing of
the two tones generated by the OCS modulation is 20 GHz, and
the spectrum range of the UWB pulses is more than 10 GHz,
resulting in partial frequency overlapping between the two
tones. However, the 10-dB bandwidths of the monocycle and
doublet pulse are less than 10 GHz. Therefore, the impact of
the frequency overlapping on the up-converted UWB signal is
insignificant. One can obtain a 24-GHz UWB signal matched
with the FCC standard after PD detection, which is verified
by the electrical spectra indicated in Fig. 6. The up-converted
UWB signal has a central frequency of 24 GHz and a 10-dB
bandwidth of 6 GHz (from 21 to 27 GHz). A residual
20-GHz RF component is observed due to the OCS modu-
lation. However, the undesired RF signal is located outside
the bandwidth of the up-converted UWB pulses between 21
and 27 GHz, which can be easily filtered before radio prop-
agation. Since the center frequency and the bandwidth of the
UWB pulses are dependent on the pulsewidth, one important
consideration is whether the UWB pulses are broadened after
transmission. We provide measurements of the FWHM versus
transmission distance. For a given temporal pulsewidth and
time decay constant, the doublet pulse has lower bandwidth
than the monocycle pulse. Thus, the doublet pulse shows better
tolerance to dispersion, as indicated in Fig. 7(a). We also mea-
sure the BERs (bit-error rates) of the generated UWB signals,
as provided in Fig. 7(b); the doublet pulse shows lower power
penalty after 25-km transmission in the up-converted UWB
over fiber system.

IV. CONCLUSION

We have proposed and experimentally demonstrated a
24-GHz UWB over fiber system, where a single DPMZM is
used to generate UWB monocycle or doublet pulses, and OCS

Fig. 7. (a) FWHM versus transmission distance; (b) BER curves.

modulation is employed to up-convert the UWB baseband to
24-GHz band. The proposed scheme may provide an effective
solution for distribution of 24-GHz UWB over fiber systems.
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